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INTRODUCTION

This paper will discuss a possible low-level control
interface for a robot manipulator. The first section
will present background information describing a
proposed system modularization and the capabllities and
limitations afforded by the use of interfaces. The
next section presents three possible low-level robot
control interfaces within this system. These will be
elaborated on including a specification of the
interface information and 1ts use, timing
considerations, and potential limitations. The paper
ooncludes with a summary discussion and recommendation.

I. BACKGROUND

This section provides the background discussions on the
low-level interfaces into a robot controller. The
first section describce a proposed architecture for a
real-time control system that defines generic task
decomposition modules and the interfaces between then.
The second section defines the different types of
information that a well specified interface nmust
provide. The next section explains the function of an
interface as a tool for abstracting information into a
simpler format so that it may be used to construct more
complex groupings of information, and provide the
capability of plug compatible systems.

I.1 A Proposed System Modularization

In order to specify interfaces, the systenm
modularzation should be defined. An architecture for a
real-time control system has been proposed by the
Kational Bureau of Standards (1-4). It consists of a
number of component modules which are generic control
levels. These generic control levels can be stacked
intoa multiple level structure that provides for the
hierarchical decomposition of a task. The more complex
the task, the more levels are required. Depending on
their location in the overall architecture, some of the
levels will not only decompose a task into simpler
parts, but also coordinate activities of several lower
control levels (Figure 1).

The interfaces are defined by the data that
communiocate the command and status inforsation between
these control levels. As shown in Figure 1, there is a
robot task controller that receives commands from the
workstation controller and sends back status data
relevant to these commands. This task decomposition
controller of the robot also interfaces by way of a
request and a feedback buffer with a sensory processing
and world model system that can be pictured
horizontally along side of it. This robot task
oontroller decomposes the high level task commands into
low-level control commands for the robot.

Below the task decomposition controller is the robot
Joint controller, It is responsible for developing the
drive signals to a particular robot, 4instant by
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instant, required to carry out the commanded tasks,
while coordinating all of the joint motions and not
exceeding any Jjoint limits. It is this interface
between the task decomposition controller and the robot
joint controller that is to be discussed in this paper.

Each of the controller modules shown in Figure 1 is
itself ocomposed of one or more generic control levels.
The generic control level is used as the fundamental
building block in this architecture. Figure 2
provides a more detailed look at a generic control
level. Each level interfaces to four other components
in the system., The first is an interface to a control
level above that performs a higher level decomposition
of the task. This interface is composed of two buffers
- 8 command bufferfrom, and a status buffer to the
higher level. In like manner, there is a similar
interface to a control level below that consists of
command and status buffers. There is an interface to a
sensory processing/world model system which provides
feedback information describing the present status of
the environment. This interface oconsists of a request
buffer to this system and the feedback response buffer.

In order for the system to display the type of
flexibility required, it is important that the data, as
much as possible, be separated from the actual
processing within each level. For example, a transfer
task - to move an object from one point to another -~ is
independent of the type of object to be moved and of
the particular locations. The particular numeric
representation that defines the object and the
locations in space ocan be separated from the prograns
and suppliied at execution time through the fourth
interface into a knowledge base that carries all the
task specific data required for the controller. This
separation of task and data - the creation of a data
driven system - provides a system where it is possible
to think of programming off-line the task specific
data, perhaps through a CAD system, without having to
reprograxn the generic task decomposition algorithms
within the control levels to handle the new task to be
accomplished. This adds a great deal of flexibility to
the system (5).

This interface to a specific task knowledge base allows
the command-status interfaces to represent levels of
abstraction in a description of the task. For example,
the command from the Workstation Controller to the
Robot Task Controller might be

TRANSFER object FROM source TO destination
where the object, source and destination fields
oontain the symbolic names of these ftems. To properly
carry out this task, there is task specific data - grip
points on the object, grip force parameters, approach
and departure paths, intermediate trajectory points,
acceleration and deceleration profiles, etc. - which
are required to fully deacribe the task. This type of
information should be provided through the interface
with the task knowledge base.
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In the system implemented at NBS that uses this
architecture, the robot control system below the
workstation controller which consists of the Robot Task
Controller and the Robot Joint Controller is made up of
five different levels of task decomposition (Figure 3).
The interface to any of the three lower levels could be
specified as the potential candidate for the interface
to the robot joint controller. It is the intent of
this paper to examine these three and to recommend one
of them as the most appropriate at this time for a
model of a low-~level robot control interface to be
supplied as an option on commercial robot controllers.

The lowest level interface shown is to the servo-
control level. At this level joint position, velocity,
or torque information defines the robot motion command
during the next time increment. This level uses that
command together with joint feedback data to calculate
the next drive signal values to be sent to the
actuators.

The level above this, identified as the coordinated
Joint level, receives commands in a robot independent
format that specifies the position and orientation of
the tool-mounting plate at the end of the robot. This
might also be a velocity or force command, but
specified in a convenient world-based coordinate frame
of reference. It is through the coordinated joint
level that this information will be transformed into
the joint representation of the robot to cause the
tool-mounting plate and therefore the attached tool to
behave as commanded.

The level above this - the primitive level - receives
commands in the form of goal points or trajectory
segments, It generates all the intermediate positions
in space of the tool-mounting plate that define the
control path to the specified goal point.

Interfaces above these levels will not be addressed in
this paper. These three interfaces then, that
represent the inputs to these three levels of control,
the primitive, the coordinated joint and the servo,
then become the target interfaces for a low-level robot
eontrol interface.

J.2 Complex Interface Specification

Interfaces are the complementary result of the
modularzation of a8 system into functionally separate
components, The ‘interfaces are the connections between
these components. A system 1s modularized to partition
out simpler components or modules to make it esasier to
understand, design and implement that system. For
example, a robot controller might be modularized into a
nuzber of components such as the coordinate
transformation routines, trajectory routines, pallet-
offset routines, servo routines, etc., or whatever set
of modules that the designer finds appropriate to meet
the functional requirements. These modules ( sets of
routines ) have interfaces between them, These
interfaces can be defined by the data that passes
between the modules as they are called to carry out
their portion of the overall function.

Bowever, the interfaces are also implicitly defined by
the timing and the functional use of this data during
execution. That 1is, the data by itself does not
oompletely specify the interface between component sets
of programs. When the trajectory module calculates the
next intermedliate point for the robot and passes it to
the servo module, it is implicitly assumed that the
servo module will execute on it at that time rather
than at some later time. It is also implicitly assumed
that the servo module will do whatever is required to
cause the robot to reach that comsanded position. In
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reality, the servo algorithm might cause the robot to
go to a different position, offset from the commanded
position because of a gravity loading force creating a
steady state error that the servo algorithm 1is not set
up to overcome. In this situaion, the programmer might
provide status back to the calling routine that
includes information about the robot's actual position.
Alternatively, a new servo algorithm might be written
with additional calculations used to servo out steady
state errors. In any case, it is important to note
that the programmer has passed data between the modules
with implicit assumptions about the timing and
functional use of that data due to his detailed
knowledge of how each part of the entire system was
executing.

Thus, the data specification constitutes a valid
interface between two modules only if the modules
execute on 1t in an expected time interval and in an
expected manner, The interface, such as the one being
described in this paper, will comnect two modules that
will not have been writen by the same person, or even
by the same company. Therefore it is important to
explicitly determine and specify all of the
information, including what is implicitly assummed.

All interfaces to be discussed later in the paper will
be defined by:

1. The data specification that includes the format
and legitimate values within the buffer that
represents the information passed between the
connecting modules. This includes the information
passing in both directions between the two modules.

2. The timing specification that includes the
maximum time delay in communicating a data set from
one module to the other, the expected time interval
before the receiving module begins execution on the
data, the expected time interval before a resultant
change in output will occur, and the expected time
before status will be received back from the
module.

3. The functionality specification that includes
what behaviour is expected from each module as a
result of each piece of information passed to 1t:
not only what a module should do, but what it
should not do.

The data specification (the explicit information) and
both the timing and functionality of connected modules
(the implicit information) are all needed in the
definition of the interfaces between modules. When a
system is designed and bullt as a stand alone, bundled
system, these problems of understanding and specifying
this additional timing and functionality of the
interface data usually do not occur because the
programmer resolves these issues with implicit
knowledge about the detailed operation of all parts of
the overall syatem. If, however, a system is to have
interfaces from external systems into it at different
levels of its capabilities, or is it itself to be a
component of a yet larger system, then these issues of
the interface specification must be addressed.

A totally separate issue from the above description of
an interface is the specification of the communication
mechanisa that will be used to transfer the interface
data. Whether an RS-232 serial link, a parallel link
or a network coaxial base-band or broad-band system
with its associated protocol, is used 1is part an
independent issue and will not be covered in this
paper.
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The Robot Task Controller and Robot Joint Controller are composed of
five generic control levels. There are three possible interfaces
between the lower control levels that might be used to define this
interface between the two pictured controllers.



I.3 Interfaces and Levels of Abstraction

Interfaces provide levels of abstraction within a
system. Within the control architecture described in
section I.1, the interfaces represent different levels
of task description or abstraction. The interface data
to the Coordinated Joint Level includes task commands
which might be the specification of the next pose of
the tool-mounting plate in space. A group of these
poses represents an approach path. Therefore, it 1is
possible to assume that the interface to the next
higher level (Primitive ) could contain commands such
as "GO-THRU Intermediate-Point-I1" which is really an
abstraction by way of "chunking" or grouping together a
set of poses through space.

Figure 4 fllustrates an application task decomposed
through the five levels in the controller
architecture. The interface data reflects the
different levels of abstraction for this task as
implemented.
information at the level of a command to TRANSFER an
object. The next lower level interface contains
information in the form of simpler commands like MOVE-
TO a source location, PICKUP an object, ete. The
function of each module becomes the manipulation of
data between a higher and lower level of abstraction:
the breakdown or decomposition, of a broader scope
representation of the information into its component,
more detailed subcomponents.

An analogy to control interfaces in a robotics system
can be made with programming languages used as
interfaces to computers. At the lowest l~vel, computer
hardware 1s controlled by patterns of bits that
represent various gate levels in the control logic.
This machine code programming can be abstracted to a
higher level interface known as assembly language,
where single mnemonics represent a pattern of 8, 16, 32
or more bits in the machine code. This can be
abstracted to a high level language where single words
or operators can represent 1, 5, 10 or more assembler
mnemonics.

The control interfaces, the language constructs, are
defined for computers for the same reasons as for
robots. First, they allow plug compatibility, i.e.
programs written in FORTRAN can run on different
computer hardware systems. They also identify levels
of abstraction so the task or program can be specified
at a high level of abstraction without getting involved
in the lower level details of the system.

This analogy also points out some of the limitations
that occur. The high level languages aay not be able
to utilize specialized hardware capabilities for a
specific system. Thus, the higher the level of
abstraction, the less detailed information about the
low-level aystem can be represented. There is the
dilemma that if all of the low-level detailed
capability can be represented in the high-level
interface, then the value of the interface is lost
since there has been no abstraction or apparent
reduction in the amount and complexity of the
information at the different levels.

I.4 Interfaces and Large System Integration

Command-status control interfaces offer a number of
advantages for large system integrations. Interfaces
define a plug compatible data set that allows modules
to be changed to upgrade their functional capabilities
with minimun ripple effects on the rest of the system.
For example, a trajectory generation module could be
upgraded to provide a smoothly varying acceleration,
instead of a step function acceleration. The input data

The highest level shown depicts.
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is still the goal point. The output data of the module
is still the sequence of intermediate positions. The
function of the module has been replaced with an
improved version.

A larger view of the plug compatible feature is that
interfaces provide the mechanism for assembling
components into larger systems. For example, well-
defined interfaces might allow the integration of any
of several different robots to a generic robot task
controller module, so that the application programs do
not have to be changed or rewritten to carry out the
same task, using different robots.

The low-level control interface within a real-time
system is complex. The robot interfaces are bi-
directional: control information is sent to the next
lower module and status information is received back.
In addition, the control of the robot joints may be
commanded by joint position, velocity, acceleration or
torque or some combination of these.

The design of a system to create a low-level control
interface to gain plug compatibility and information
abstraction, could potentislly limit the efficiency
with which individual robot manipulators can be used in
realizing their unique capabilities. However, it
would provide the ability to be able to integrate many
different robots, with different capabilities, into a
system to perform different tasks without having to
change the upper levels of control.

The use of interfaces to define plug compatiblity and
levels of abstraction also encourages the development
of data driven systems. These include developing
structures, languages and programming styles to specify
application tasks in a data independent form where only
the generic task decomposition is described. The data
that uniquely specifies particular workpieces in
particular locations and orientations are tagged to
variables during execution through a separate interface
to the task specific knowledge base as described above.
For example, a transfer application task would involve
going to a source location, picking up an object, going
to a destination location, setting down the object and
going to & final location. This sequence of operations
is generic across all transfer tasks. The numerical
identification of relevant grips, approach and
departure paths for a particular object as well as the
ooordinates that define the locations in the workspace
oould be obtained from data structures during execution
by associating particular objects with locations and
retrieving all of the associated data records.

The abstraction in the command structure of the control
interfaces tends to preclude the specification of all
of this data with the command and therefore, if this
data is not to be buried in the internal programs, a
separate interface to an external representation of
this detailed task data is suggested.

Thus, control interfaces would contain the generic task
conmands with only those data arguments that are
appropriate to that level of command abstraction ( for
example, only the symbolic names of particular objects
or locations.) To deal with new parts or a change in
the work environment, would be a change in the data,
not in the programs. This same application progran
would accomplish the task using a different robot or in
a different workstation without reprogramming.

In addition, the task description is modularized by the
control interfaces into different levels of abstraction
which enhance the user's understanding of the systena
and help identify appropriate places in the system for
the addition of new features, sensors, stc.
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The function of each of the five task decomposition control levels is
1llustrated here. The Task Level receives commands through its input
interface. An example is the command to TRANSFER an object from a
source to a destination location and move the robot to a final position.
The Task Level decomposes the task into & sequence of simpler commands,
such as MOVE to the source location. Each lower level decomposes a
simpler and simpler command until the lowest level is commanded the
drive signals to the actuators. At each level, there is illustrated the
overall effect of the input commmand at that level with respect to the
oomplete task.



These advantages come at & cost of more effort in the
design and implementation of controllers to partition
and provide these interfaces and a probable limitation
in the efficiency or optimized use of a particular
robot manipulator's features.

II. LOW-LEVEL ROBOT CONTROL INTERFACE

The above sections were used to lay the background for
the discussion of a low-level robot control interface.
To have an interface, a system must first be
partitioned into component modules. The suggested
architecture described above identifies an interface
between the Robot Task Controller and the Robot Joint
Controller. A finer partitioning of the control systenm
represented by these two controllers leads to three
potential interfaces at different levels in the task
decomposition atructure. Any one of these three might
be made to represent the interface between the higher
level task controller and the lower level Jjoint
controller.

The possible advantages of a control interface of this
type will be reviewed before discussing these three
specific interfaces in detall. These advantages can
then be used as a checklist against which to evaluate
each of the individual interfa-es to determine a figure
of merit of its usefulness,

II.1 Externally Generated Control Capabilities

The purpose of a low-level control interface is to
provide a means of giving the robot additional
capabilities over what might be provided by the
vendor's controller. The interface provides a
mechanism whereby a user can control the robot, taking
advantage of the robot's manipulation capabilities
while integrating it into user specific tasks too
diverse to be easlily accomodated by the vendor's
controller.

The following is a brief description of a number of
more sophisticated control capablilties that are not
available with many vendor's controllers. Without the
vendor providing the ability to do these types of
tasks, the user's only option is to supply the
copputing system and algorithms necessary to calculate
his specific control requirements, decompose the task
execution into the low-level robot control information
necessary to command the robot, and pass this data
through the proposed vendor supplied interface.

Desired control capabilities are:

1. To control the path of the robot using
trajectory capabilities such as velocity and
acceleration control, or to define arbitrary paths
through space to follow (a particular mathematical
surface or curve), or to change the path or
trajectory parameters at any instant before the
original goal was reached.

2. To allow interaction with any sensors, simple
or complex, to furnish data for the real-time
control of robot motion based on these data ( 1.e.
continuous real-time path modification based on
sensory feedback.) This includes the ability to
interact with safety systems and interlock signals
between equipment components.

3. To control detailed fine motion of the robot as
8 closely coupled operation with another device.
This device, such as a glue gun, a welder or paint
sprayer, may be attached to the robot and the
feedrate of this device might vary, be sensed and

used to control the path rate of the robot. The
device may be another robot, locked in a tightly
coupled task requiring this type of high speed fine
motion control.

4. To make the actions of the robot manipulator
part of an integrated task of a much larger scope.
For example, the robot might be one component of a
totally automated workstation involving a machine
tool, robot, automatic fixturing, materials
transport, etc. where 1its actions have to be
commanded and coordinated with all of the other
activities in order to accomplish the overall task.

5. To make use of information in external data
bases that might represent points 1in space,
trajectory paths, etc., where accessing this
information would save much effort over teaching
the robot or entering this data into its programs
in the vendor provided manner, As an example, a
data base might contain the location of 500 holes
to be drilled in an airplane wing. Clearly,
retrieving this already existing data is preferable
to teaching all of these points to the robot.

6. To create generic task application programs so
that the same higher level program can be used with
a different robot of either the same type, o
ultimately a different type that still meets the
manipulative requirements of the task. For
example, an application program could be written to
spot weld a fender, and if the particular robot
that normally carried out the task was to become
inoperative, another robot on the line could be
controlled to carry out the same task by sending
the same control information through the interface.

This ability would also be valuable in a system of
a number of different vendor robots where the
programming of one vendor's controller does not
match that required for another vendor's system.
Therefore, a user might connect through a low-level
interface into a number of different robots and
provide his own single generic controller to do the
task decomposition, and thereby make all of the
robots appear identical to both the programming and
control system. This would greatly reduce the
programming support burden and simplify the task
description in large integrated systems.

By providing a well-specified low.level control
interface, the above capabilities could be achieved.
All increased capabilities, however, come at some cost
and these limitations will be mentioned with respect to
each of the particular interfaces. In general, the
cost of interfacing in loss of efficiency or decrease
in optimization of use or functionality. That is, an
interface is a greatly reduced information set, used to
designate a command or action. Because so few bits of
information pass through an interface, there is a
limited amount of unique specialized control that can
be communicated. This will be elaborated on in the
following three sections which will describe the three
possible control interfaces into the robot Jjoint
controller.

II.2 The Servo Level Control Interface

The first interface, that of the interface into the
servo control level, requires information unique to a
particular robot. At this level, the interface
commands are identify particular control actions for
each of the individual joints of the robot. This level
interface is robot dependent. That is, the information
that passes 1s specific to an individual robot and
could be very different from one robot to another.



This interface contains data of several types (Figure
5). There has to be command information passing from
the level above into this servo level to provide
position, velocity, acceleration or torque data for
each of the individual joints. It is also desirable to
be able to modify this information at any time during
execution. That is, in one command, request a position
servo, and in the next coamand request a torque servo
or velocity servo, etc. This requires the capability of
not only passing a set of data that represents the
values for each of the joints of the robot, but also
some sort of flag information to indicate that these
fields represent torques, positions, velocities or
accelerations.

It might be desirable to be able to include parameters
that would change different gain factors or
coefficients that are used in the servo equation. For
example, at some time it might be desirable to have the
robot behave as if it were a very high gain system for
high precision work, and at other times to have it
behave as if it were a low gain system for smooth
trajectory motions. Either these or some other
parameter could be used to identify changing load
situations.

The interface returns information that 1is status. This
status information represents whether or not the servo
level was able to carry out the last command given.
For example, did the servo level successfully move the
Joints to the commanded positions. If it hasn't, then
the status parameter would indicate this with either a
qualitative or quantitive measure of success, such as
the percent of the move accomplished, or perhaps some
timing information that indicates when that command can
be expected to be realized.

Part of this information being returned to the level
above is status of the last command that was given to
the system. In order for there to be no confusion
about what the status relates to, the interface will
have to include information to define which command the
status is referring to. Depending on the
communications mechanism used to transfer the data, it
is entirely possible that status being received may be
for the command issued before the last command that was
sent (that is, two commands before the current
command.) Therefore, to eliminate this confusion, there
should be additional information in the interface that
uniquely identifies each command, and the status should
reflect this identification,

As nentioned above, there must be specified a rate as
to how often commands are to be accepted and acted
upon, and how often the status data is to be returned.
Further, these command and status transmissions should
be parallel activities, both occuring essentially
simultanecusly, that is with the same effective rate.

In addition to the command and status information,
there is the expected timing of the interactions. Real-
time oontrol systems imply timing constraints. When a
command is passed to the servo level, there is an
expectation that that command will be acted upon by the
servo level within a certain limited time period, and
that it will be acted upon even if the previous command
1s not yet finished, The timing specification in this
interface, should include the maximum time allowed
after a command is given before the level below must
begin executing on 1it, as well as a maximum time
before the expected completion of that oommand. This
would require that the level below not pipeline or
buffer input commands. Nor should the level wait until
it has actually finished a previous command before it
begins working on the next ome, It is expected that a
command passed through the interface will be acted upon

and executed during the next control cycle of the lower
level. Therefore, the maximum times allowed to ensure
this happening should be specified in the interface.

The communication rate through this interface into the
servo level might be such that new commands will be
provided at a rate less often than the servo rate. New
Joint positions might be commanded at a rate of 50/sec,
for instance, whereas the servo update rate for the
actuators might be on the order of 1000/sec. In this
case, an interpolation would be required within the
servo calculations to provide new set points at the
servo rate, Additional parameters could be passed
through the interface to help define the expected
velocity or acceleratin profile so interpolation
routines other than linear could be used to smooth the
msotion.

Further, certain information about the robot that may
be returned in the status might require some manner of
time stamp. Part of the status information might
include the measured position of the robot at each
instant in time, This becomes very important for use
with sensory data that comes from sensors mounted on
the robot itself, When the robot is moving and sensory
readings are taken, those sensory readings must be
oorrelated with the exact position of the robot at the
time the readings were taken. Therefore, there must be
a mechanism to define exactly when the robot positional
information is read as opposed to when it 1s reported
through the interface. If the robot is only to be used
in tasks where it is moved to a location point, allowed
to come to rest and the sensors sampled, then this
timing of when the robot's position sensors are read 1is
not critical, as long as 1t happens during the period
when the robot is stationary. But for more
sophisticated sensory interaction, where sensors are
sampled during robot motion, it 1s critical to be able
to identify at what time the data was sampled in order
to correlate these readings with the absolute position
of the robot.

Four possible ways of dealing with this 1issue are
described. First the low-level controller samples the
positional values at a fixed time in its control cycle
and passes these values back through the interface with
a fixed known time delay. The second requires external
ocommon hardware connections between the modules that
provide either the signals of an externally generated
clock, or that allows separate transmission of unique
codes at the time the position sensors are read by the
low-level controller. This code is appended to the
sampled joint position data and passed with it to the
higher level. The higher level correlates this data
with the sensory readings marked with the same code.

A third method 1s to provide another interface,
separate from the control-status interface, that allows
the higher control level to treat the robot position
sensors like any other sensor and sample them at an
appropriate time with respect to the other sensors.
Both the second and third methods require an
additional interface into the low-level controller for
either a hardware signal or to request that the
position sensors to be sampled.

The fourth technique 1s to use a totally separate
positional measurement system from the Jjoint position
sensors on the robot and to sample this external system
as to the location of the robot at appropriate times
relative to the sensor readings.

This particular aspect of the low-level control
interface has been dealt with here in greater detail
because of the importance of knowing the exact position
of the robot for sensory interactive control.
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The major disadvantage of this level interface is that
the command data is not robot independent. The burden
would fall upon the user to perform the transformations
from the generic world space coordinate systenm
generally used in the the task decomposition into the
particular joint representation necessary for this
particular interface. The advantage of this interface
is the very detailed control of the robot in both space
and time that it provides for the user.

II1.3 The Coordinated Joint lLevel Control Interface

The second interface is the one that occurs between the
previously defined Primitive and Coordinated Joint
levels. At this interface, the information takes on a
much more robot-independent form. The interface at
this level is meant to be a description of the position
and orientation of the tool-mounting plate of the robot
‘in a world space coordinate frame of reference., This
could also represent a robot -independent specification
of a velocity, acceleration or force vector.

This 1s the next higher level of interface arnd as such
represents a further abstraction of the robot control
information. It is this abstraction that has freed the
interface from specifying unique joint information and
allowed the high-level tool-mounting plate pose
specification. From this information, the responding
lowelevel controller would transform these values to
obtain the particular set of joint commands to the
servo level to accomplish this command for a particular
robot.

It 4s this very abstraction, however, that will make it
more difficult to specify fine motion control of the
robot through this interface. For example, there may
be several joint configurations (as is the case with
most six axis robots) that will cause the robot to
position its tool-mounting plate in the same position
and orientation. If one joint configuration is more
desirable than another for reasons of joint member
collision with items in the workspace, how is this to
be specified? This type of specification is unique to
particular joint configurations and it is not clear how
the interface can handle this information in a general
vay consistent with the intended generality of the
robot-independent specification of the pose
description. This problem is greatly increased for
robots with more than six axes where very large sets of
multiple solutions exist.

Mditional effects of an interface at this level is the
much increased functionality the vendor would have to
supply below this interface to give the large range of
control needed to carry out the previously mentioned
sophisticated capabilities. The vendor would have to
provide methods to deal with singularity problems in
the mechanical system. That is, as the robot passes
through certain configurations, very large Jjoint
velocities and accelerations are required if the pose
of the tool-mounting plate is to be maintained. For
some tasks, the tolerance on maintaining this pose is
more critical than the speeds of the motion, while for
other tasks, the speed is much more important than the
pose. There would have to be ways of specifying these
tolerances through this interface and that
functionality would have to exist in the vendor
supplied oontroller to deal with them appropriately.

Another difficult area concerns limitations in joint
travel. Particular commanded poses in world space
coordinates might result in a Jjoint limit being
exceeded. However, the robot might have a Jjoint
configuration solution to the command, but 1t will
require the joints to flip to the new configuration.
In this case, the pose will probably not be maintained
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during the joint flip to the new configuration.
Further, the robot amight be sufficiently close to other
pieces of equipment to collide with them during the
£1ip., How 1s this to be controlled through this
interface? There are certain times when it would be
better to leave the joint commanded up against its
limit, other times when the flip is appropriate and
still other times when the robot could back out of a
congested area, flip the Jjoints to a better
configuration and return. All of this capability would
have to be provided in the vendor's controller and a
mechanism set up through the interface to allow the
higher-level controller to decide on the best action
for a particular task.

Another situation exists where the most convenient
trajectory for the robot to make would be in joint
space. The upper level controller might provide a goal
in the robot -independent format through the interface.
The transformation of this pose into the joint space
representation would define a set of joint values that
are far enough from the present positions to take a
number of control cycles to reach. These values could
be passed directly into the servo level allowing the
Joints to move at whatever speed they can to the final
position.

Conversely, after doing the transformation and
calculating the final joint configura.ion, another
vendor supplied algorithm could test for joint velocity
and accelerations being exceeded 1f it tries to get to
this position in the next control cycle. If it is too
large a distance for any of the joints to move in one
eycle, it scales back all of the joint values so that
all joints will receive a legal value and passes this
scaled set to the servos. This would be repeated for
however many control cycles are required until the
final joint configuration is reached., In this way, a
trajectory can be constructed through joint space in a
manner to coordinate all of the joint motions so that
they all arrive at the final position together. It
would also be desirable to control the velocity of this
joint space trajectory. Again, this means that the
vendor supplied controller would have to be able to
perform all these functions and additional parameters
passed in the interface would be required to specify
the choices of which function to do when.

With respect to the status back through this interface,
there exists the same requirements as discussed in the
low=-level servo interface concerning timing
interactions between the levels and marking of the
status relative to the exact command it is refering to.
There is also another layer of complexity concerning
the real-position of the robot as determined from the
position sensor readings. There still exists the
difficulties in the determination of exactly when the
robot position sensors are read relative to other
sensors that will be sampled by the high level
controller, In addition, if the position of the robot
18 reported as part of the status through this
interface, it would be as a description of the pose of
the tool-mounting plate in robot-independent
coordinates to coincide with the level of abstraction
of the command data at this interface. In this format
it is not known which multiple solution of the joint
configuration 1s being used.

For example, the robot might have an elbow joint in
the down position just as easily as the up position.
¥othing in the specification of the position and
orientation of the tool-mounting plate in world space
coordinates would indicate this., It is unclear what
sort of functionality each vendor should provide and
how the higher level controller could use additional
information about this configuration without defeating



COORDINATED JOINT LEVEL

Incremental Command Number for Positive

Command Identification in Status
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e~ Command e.g. INITIALIZE
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DONE
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SERVO~JOINTS
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Brakes - Set/Clear

[®- Status of Srakes

SERVO LEVEL

TIMING SPECIFICATION

® Command and status exchanged in parallel at a minimum of 30/sec

# Execution on command begun within 1/30 sec after receiving cosmand
regardless if last command finished

# Status on measured joint values returned at fixed time interval
from actual measurement time

Figure 6: Recommended command-status low-level control interface along with timing
requiresents.
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the robot-independent abstraction
level interface.

intended by this

A possible method of dealing with these problem areas
is in the use of the interface to the task knowledge
base described in the section on the system
modularization. This might allow the command-status
interface to maintain the abstraction of the robot-
independent form and for, particular tasks and robots,
to have the lower-level controller access the task
knowledge data base to retrieve the unique parameters
required. No specific recommendations or comments can
be made here about this because investigations into
this technique are still in beginning stages at NBS.

As can be seen by the above discussion, the interface
into the Coordinated Joint Level, which on first glance
appeared to offer a robot-independent interface,
requires considerable additional control information
and a large set of control capabilities to be supplied
by the vendor. Without these, the fine motion control
and real-time path modification required for sensory
interactive control would not be possible.

I1.4 The Primitive Level Control Interface

As defined in the NBS architecture, the interface at
this level has abstracted the task commands to the form
of goal points in space, specified in a robot-
independent format (a tool-mounting plate pose.) The
primitive level is to calculate the intermediate poses
required for trajectory and path control to this goal
point and to either decelerate and stop, or fly past it
according to some path tolerance, velocity and path
smoothing algorithms., It is also expected that various
sensory data will be used by this level to carry out
real-time path modification. The user will have the
capability to add whatever sensors are required and to
modify the path calculation algorithm accordingly.
Further, the commands at this interface encapsulate not
only control of the robot manipulator, but also control
of its end-effector in as much as its actions are to be
ooordinated with the robot motions.

All of these functions, including the ability to modify
the path generation algorithms and interface to
sensors would have to be provided by the vendor to
support this level of interface. Because this level of
interface makes so many implicit assumptions on so much
of the design of the control system, and requires so
many capabilities ,to be installed in the vendor
supplied portion, 1t seems inappropriate at this time
to consider it as a general purpose low-level
controller interface.

III. RECOMMENDATIONS

The interface into the Primitive Control Level is not
considered a reasonable interface at this time because
of the reasons made in the discussion above. The
interface into the Coordinated Joint Level, while
offering the benefit of a potentially robot-independent
specification, requires such a high level of vendor
support and so much robot-dependent parameter
specification that it is also probably an inappropriate
level at this time.,

The interface to the Servo Control Level, while placing
the burden of the coordinate tranaformations on the
user, has the advantage of allowing a high degree of
motion and robot configuration control in real-time.
Before a more abstract higher level interface is used,
it is reasonable to attempt this low-level interface
capability with several vendors so that a number of
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users and researchers can experiment with, and gain
experience by programming a sufficiently large set of
tasks with this interface to better understand the
real-time control problem, and, by so doing, better
understand how to modularize and specify interfaces.

Since even the interface to the Servo Control Level as
described above is very complex, a subset of this
interface is recommended. Because most vendors
calculate a position serve algorithm, this could be
considered the minimum joint command data. If others
could also offer velocity or torque control, the
interface could easily accomodate them. A minimum set
of actual commands should be provided such as
INITIALIZE, CALIBRATE, TURN-OFF-SERVOS, and SERVO-
JOINTS. 1In like manner, a minimum set of status values
should be provided such as EXECUTING and DONE.

Fields in the data specification should be provided for
the commanded joint positions, the values to set or
reset individual brakes, and some argument to indicate
the command number or similar mechanism for the status
to echo for positive identification of the particular
command that the status refers to.

Additional status fields could contain the actual brake
status and the measured joint positionms. Timing
specifications could be of the form as shown in Figure

An interface of this level provided by all of the robot
vendor's would greatly enhance a number of user's
capabilities in studying task deconposition, sensory
interactive control and large integrated system issue:.
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